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ABSTRACT

Wehavesolvedfor thepotentialflowdownstreamof theterminalshockof thesolarwindin the limit of

smalldeparturesfroma sphericalshockdueto alatitudinalrampressurevariationin thesupersonicsolar
wind.Thesolutionconnectsanisotropicstreamlinesat theshockto uniformstreamlinesdowntheheliotail

becauseweuseanon-slipboundaryconditionontheheliopauseatlargeradii.Therotationalvelocityabout
theheliotailin thenear-fieldsolutiondecaysasthefourthpowerof distancefromtheshock.Thepolar

divergenceof thestreamlineswill haveconsequencesfor thepreviouslydiscussedmagneticpressureridge
thatmaybuild-upjust insidetheheliopause.

I. INTRODUCTION

Wehavepreviouslyshowntheconditionsunderwhichpotentialflowoccursbeyondtheterminalshockofthe
solarwind.Topologically,potentialflowrepresentswellmanyoftheglobalpropertieswhichareuniversalto

allheliosphericstagnationpointflowtopologies[Suess,1990].Theflowisself-consistentlyincompressibleto

about15%andirrotationalto 10%[Suessand Nerney, 1990, 1991 (SN1, SN2)]. The latter is true when the

non-slip condition is used on the heliopause at large radii. Because it is likely that reconnection occurs near

the stagnation point between the heliosheath and interstellar magnetic fields, we believe that the heliopause

is best represented as a non-slip interface [Suess and Nerney, 1993]. This reduces the solar wind Mach

number down the heliotail compared with free-slip numerical models, reducing the effect of compressibility

in this region.

Recently, a numerical simulation for an external Mach number of M=0.8 has shown that the shock is nearly

spherical and Sun-centered even in that extreme case [Steinolfson, 1994]. That calculation further showed

that the density changes by a total of only 28% in crossing the heliosheath and heliopause and that, in

general, compressibility is not globally important. The only place where it is not completely negligible is in

the boundary layer at the heliopause. Vorticity is introduced only in a thin layer just beyond the terminal

shock. This lends credibility to potential flow modeling in the case of a subsonic external flow. We do not

consider the case of external supersonic flow because we believe that the interstellar wind is likely to be

sub-Alfvenic and information will be able to propagate upstream, removing the necessity for a bow shock

(also see the discussion in Nerney ¢t al., 1994).

The merging of the shocked, subsonic solar wind with the 25 km/s interstellar wind was calculated in our

potential models by including the effects of a finite radius (R,) terminal shock. This effect entered the

solution for the streamlines through a parameter ¢ which is a measure of the ratio of the interstellar ram

pressure to that of the pressure in the shocked solar wind just beyond the terminal shock. Vanishingly

small values of e reproduce Parker's [1963] model for a weak interstellar medium with a large turning radius



for thesolarwind. Becauseof this, theshockradiusis smallcomparedto the transversedimensionof

theheliosphere,andtheshockappearsto havea negligibleradius.Thenumericalsolutionswereplotted
for variablee, and the distance from the stagnation point to the terminal shock was no larger than R, for

probable heliospheric parameters. A plot of the streamlines illustrating this result for e=.125, an appropriate

value for the heliosphere, is shown in Figure 1, which also serves to define the related terminology. This

problem is of general astrophysical interest for the merging of shocked stellar winds with the interstellar

medium.

It is our purpose now to show the nature of the change in these results when a heliocentric latitudinal ram

pressure variation is imposed on the supersonic wind upstream of the shock. This requires a non-spherical

shape for the shock due to, for instance, high-speed streams emanating from the poles of the sun, and changes

the character of the solutions near the shock. Observations of a latitudinal variation in the interplanetary

Lyman o_distribution [Kumar and Broadfoot, 1979; Lallement el al., 1985] have been interpreted as indicating

a 30-50% decrease in the solar wind mass flux from solar equator to pole during 1973-1977. This would lead

to a increase in solar wind ram pressure from equator to pole in the outer solar system for a 30% decrease in

mass flux, but not for a 50% decrease. Our model is more appropriate for periods with mass flux variations

in the lower range of values.

We have linearized the solutions in the departure from sphericity. The mapping from heliocentric spherical

polar coordinates to heliocentric heliotail coordinates (cylindrical) introduces an azimuthal dependence of

the streamlines about the heliotail. There is also rotational flow about the heliotail which decays as the

fourth power of distance from the shock. A further asymmetry is introduced because the footpoints for each

streamline begin at different distances from the sun.

We present the mathematical formalism in II, the numerical analysis in III, and the conclusions in IV.

II. MATHEMATICAL FORMALISM

The potential flow equations are the following:

or

V._----0 (la)

b" = -V(I) (lb)

_2_ = O. (lc)

The boundary conditions are:



¢)IR. = ¢) (2a)

lim _"= vi_ (2b)z--._

where R, is the distance to the terminal shock, vz is the solar wind flow velocity downstream of the shock,

¢ is the azimuthal angle about the heliotail, and 0 is the polar angle with respect to the z-axis, the direction

of the interstellar wind. We impose the following asymptotic flow pattern on the supersonic solar wind:

v, = v,0(1 - 8sin 20s) (3a)

where Os is the solar polar angle and _ < .2, and v,0 is the solar wind velocity downstream of the shock

along the solar rotation axis. Rotating into heliotail, heliocentric spherical polar coordinates:

v, = v,o[1 - 8(cos 2 0 + sin 2 0cos _ ¢)]. (3b)

The rotation of coordinate systems introduces a cos 2 ¢ dependence on azimuth about the heliotail. Equiva-

lently,

v, = v,0[1 - 6(4P0 + 2P: + P_ cos2¢)] (3c)

where P_ and P_ are the Legendre polynomials and the associated Legendre polynomials, respectively.

Now, ¢ may be written as:

[ Q_s0)n (__).+1]
= __, Am,, r + Cm,, cos me P_(cos 0) (4)

mjn

and Rs0 is the value of R, along the solar rotation axis. The Am,,, are determined by requiring that the

velocity of the shocked wind approach that of the interstellar medium at large r, eq.(2b). As in SN1

except that

where

Am,n = 0 V (m,n) (5a)

A0,1 = -vioo Rs0 (5b)

R, - R, ov,(O,¢) _ RzoV (6)
YS0

which is derived by setting the ram pressure ofthe solar wind equal to the net pressure in the localinterstellar

medium(LISM). Eq. (6) serves to define Vand gives the angular variationfor the distance to the termination

shock.



Takingtheradialderivativeof equation(4),includingonly terms present in v_, and evaluating at R_, we

find:

V=e2/3p 1+ R, ov,oV2 Co,o+_+ (Co,2P°+C_,2P_cos2¢) (7)

so that the angular variables occur in both the numerators and denominators of equation (7), unlike the

spherical shock solutions. We have defined e as in SN2:

t v,0 j " (8)

Now equating equations (3c) and (7) and linearizing the various powers of 1/V using binomial expansions,

allows us to solve for the coefficients of the spherical harmonics so that ff may be written as:

R' 0"D + cosv, oR,odP _ _e2/3p 1 _r + __r_(1R_0 - 6) + --_--(1 - 26) - 3r 3 _r2 (9a)

where

and

r_ = w2 + z 2 (9b)

1 (3 cos _ 0 - 1) (9e)P2=_

P_ = 3 sin 2 0 (9d)

The velocities are derived from the derivatives of _.

vr = - (9"7 (10a)

v,o --_-(I- ) coss+R_°(1-26)-r2,_ 6(3cos20-l+3sin2Ocos2¢) (lOb)

1 0(b
v0 = ---- (lla)r 00

vo e2/3sinO 1 + .5-_-(1 - ) -.5_-sin20(1 - cos2¢) (lib)
YsO

1 O0
,,, - - (lle)

v, _ 6R_OsinOsin2 ¢ (lld)
Vso r 4

In passing, we note, as expected, that there are no order e effects in v¢.

We will now switch to cylindrical coordinates aligned with the heliotail and convert the derivatives in (11)

to:

vs0 -- r 3 1 - _F1 - 1.5e 2/3 (1 - ) (12a)



a_o
Fa = 2 + _ [4z 2- w_ + (3w 2- 22) cos2¢]

z :_o r :o lv.o r 3 L2r s

5R20 2 2 _ 2
F2=2-.-_- + 1.5 + _(2.5cos2¢- 1)

v____¢_ -6 R4°----_wsin 2¢
Vs 0 -- r5

For economy of notation we have written r _ for _v_ + z 2. The streamlines are defined by

dz dw vzd¢

Vz Vw V¢

Using the nondimensional variables from SN1

wel/3

Rso

zel/3

¢-
Rso

(note that el/3/Rso remains finite as e _ 0) the streamline equations can be written as:

(12b)

(12c)

(12d)

(12e)

(13)

(14a)

(14b)

where

dC dq de

_ _ _ _-_i(1 6F2)+,-.d " 2% _"
12 ',

1.5--_( 1 _ a=_l - ge2/asin2tb

(15)

r,d = + (16)

and F1, F_ are rewritten as

e2/3

F_= 2+ _ [4C_- ,?+ (3,?- 2__)cos2¢] (i7)

c_/3[ 1'5(2 T/2r;,d ]F2 = 2- _ .5 2 :T (2.5 cos 2¢ - 1) (18)
rnd ?"nd

When r/ = 0 and drl/d ( is infinite, vz must be zero. Setting the left denominator of (15) to zero then

determines the non-dimensional distance to the stagnation point:

(c(1 - 6F2) + (C_) 3/2 - e(1 - 2.46) = 0 (19)

III. NUMERICAL ANALYSIS

Figure 2 shows the streamlines for a 20% deviation from a spherical shock both in the meridional plane (solid

lines; ¢ = 90 °, which includes the solar rotation axis) and in the equatorial plane (dashed lines; ¢ = 0°).



Theequatorialstreamlinesmapbackto the innercircle,a cross-sectionof theterminalshock,whilethe

meridionalstreamlinesmapbackto across-sectionof aprolatespheroidandshowthe20%bulgeoverthe

poles.Thepositionsof theheliopausefor thepolarandequatorialstreamlinesareindicatedon theright
edgeof thegraph,showingthat thebulgein theshockoverthepolespushestheheliopauseout in the
meridionalplanecomparedto theequatorialplane.Thestreamlinesarenearlyradialontheoutsideofthe

shockfor ¢ = 90°, but there is elevated non-radial flow on the shock for ¢ = 0 ° and c = .125. We choose

to superimpose the graphs of the streamlines for ¢ = 0 °, 90 ° because these are the two angles about the

heliotail for which v¢ is zero (see eq. (lld)). The following plots indicate that the problem is inherently

three-dimensional for any other value of 6.

Figures 3a,b, and c show three views of streamlines that begin on the terminal shock at _b= 60 °, followed

by fig 3d which superimposes both ¢ = 30 ° (grey curves) and ¢ = 60 ° (black curves). The effects of v¢

are seen in the near-field solutions for the potential flow but decay asymptotically as r -4 (see eq. (lld)).

The potential flow solutions connect the axisymmetric boundary condition at infinity (all streamlines blend

into the assumed uniform interstellar wind) with the anisotropic boundary condition on the terminal shock

(high-speed streams at the poles) so that the streamlines must diverge away from the poles. Another way to

describe this effect is to remember that the solution to Laplace's equation minimizes the total kinetic energy

per gram integrated over any volume bounded by streamlines. This requires a divergence of the flow away

from the poles where the kinetic energy per gram on the shock is high.

IV. SUMMARY AND CONCLUSIONS

We have solved a potential flow model for the flow down stream from a non-spherical terminal shock. The

equations were linearized for small departures from sphericity and the streamline equations were numerically

integrated to show the three-dimensional flow effects. The anisotropic streamlines on the terminal shock

diverge away from the polar regions, while in the distant heliotail they smoothly take on the characteristics

of the assumed uniform streamlines in the interstellar medium. This would have consequences for the

previously reported ridge of magnetic flux that may build-up just inside of the heliopause [Nerney, Suess,

and Schmahl, 1993]. The divergence of the flow away from the poles will initially open magnetic flux tubes,

reducing the magnetic flux in the ridge. We have also reported the magnetic field line topology and solar

cycle imprint for a kinematic magnetic field in the heliosphere [Nerney, Suess, and Schmahl, 1994]. A non-

spherical shock would change the detailed shapes of both the magnetic field lines and the solar cycle imprint

shown in that calculation. However, the largest difference shows up in using a free-slip versus a non-slip

boundary condition on the heliopause. In the present calculation we have applied a non-slip boundary

condition. The consequence of a free-slip boundary condition is to increase the flow speed down the heliotail,

with a corresponding decrease in the cross-sectional area of the tail and in the thickness of the heliosheath



on theupstreamsideoftheheliosphere.
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FIGURECAPTIONS

Figure1. Streamlineplot for thepotentialflowsolution[Suessand Nerney, 1990], for e = .125 - an

appropriate choice for the heliosphere. The termination shock, stagnation point, heliopause, heliosheath, and

heliotail are indicated. The stagnation point of the flow is at Rc = 2R_ for this value of e. The cylindrical

coordinates are labeled for distance down the heliotail, z, and cylindrical radius about the heliotail, =7. The

flow is symmetric about the heliotail (independent of ¢) for a spherically symmetric shock, so the streamlines

are the same in any plane containing the axis of the heliotail.

Figure 2. A plot of streamlines for the equatorial plane (¢ = 0°; dashed lines and circular shock) and the

meridional plane (¢ -- 90°; solid lines and oval shock for a 20% elongation over the poles). Arrows on the

right-side of the figure (A for ¢ = 0 °, Blot90 °) point to the respective heliopauses. Streamlines are different

in other planes of constant ¢.

Figure 3. Panels (a), (b), and (c) show different views of the streamlines that begin on the terminal shock at

¢ = 60 °, while (d) shows a superposition of¢ = 30 ° streamlines (grey curves) and ¢ = 60 ° streamlines (black

curves). Only panels (b) and (c) include streamlines in the interstellar medium. In panel (a) the view is

looking directly at the sub-stagnation point on the terminal shock, while in (b) and (c) the stagnation point

is to the right. The streamlines diverge from the poles as the anisotropic boundary condition on the shock

(high-speed streams at the poles) evolve into the uniform flow of the interstellar wind in the downstream

heliotail.
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